论文标题

部分可观测时空混沌系统的无模型预测

A Unified Multi-Task Semantic Communication System with Domain Adaptation

论文作者

Zhang, Guangyi, Hu, Qiyu, Qin, Zhijin, Cai, Yunlong, Yu, Guanding

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The task-oriented semantic communication systems have achieved significant performance gain, however, the paradigm that employs a model for a specific task might be limited, since the system has to be updated once the task is changed or multiple models are stored for serving various tasks. To address this issue, we firstly propose a unified deep learning enabled semantic communication system (U-DeepSC), where a unified model is developed to serve various transmission tasks. To jointly serve these tasks in one model with fixed parameters, we employ domain adaptation in the training procedure to specify the task-specific features for each task. Thus, the system only needs to transmit the task-specific features, rather than all the features, to reduce the transmission overhead. Moreover, since each task is of different difficulty and requires different number of layers to achieve satisfactory performance, we develop the multi-exit architecture to provide early-exit results for relatively simple tasks. In the experiments, we employ a proposed U-DeepSC to serve five tasks with multi-modalities. Simulation results demonstrate that our proposed U-DeepSC achieves comparable performance to the task-oriented semantic communication system designed for a specific task with significant transmission overhead reduction and much less number of model parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源