论文标题

部分可观测时空混沌系统的无模型预测

CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation

论文作者

Ma, Yunshan, He, Yingzhi, Zhang, An, Wang, Xiang, Chua, Tat-Seng

论文摘要

Bundle建议旨在向用户推荐一堆相关项目,这可以一站式便利满足用户的各种需求。最近的方法通常利用用户捆绑包和用户项目交互信息,以分别对对应于捆绑视图和项目视图的用户和捆绑包表示信息。但是,他们要么使用统一的视图而没有差异化,要么松散地结合了两个单独观点的预测,而两种观点表示之间的关键合作关联被忽略了。在这项工作中,我们建议通过跨视图对比学习对两种不同观点之间的合作关联进行建模。通过鼓励两种分别学到的观点的对齐,每种观点都可以从另一个观点提炼互补信息,从而实现相互的增强。此外,通过扩大不同用户/捆绑包的分散,表示形式的自我歧视。在三个公共数据集上进行的广泛实验表明,我们的方法的表现要大量优于SOTA基线。同时,我们的方法需要三组嵌入(用户,捆绑和项目)的最小参数,并且由于更简洁的图形结构和图形学习模块,计算成本大大降低。此外,各种消融和模型研究揭示了工作机制并证明我们的假设是合理的。代码和数据集可在https://github.com/mysbupt/crosscbr上找到。

Bundle recommendation aims to recommend a bundle of related items to users, which can satisfy the users' various needs with one-stop convenience. Recent methods usually take advantage of both user-bundle and user-item interactions information to obtain informative representations for users and bundles, corresponding to bundle view and item view, respectively. However, they either use a unified view without differentiation or loosely combine the predictions of two separate views, while the crucial cooperative association between the two views' representations is overlooked. In this work, we propose to model the cooperative association between the two different views through cross-view contrastive learning. By encouraging the alignment of the two separately learned views, each view can distill complementary information from the other view, achieving mutual enhancement. Moreover, by enlarging the dispersion of different users/bundles, the self-discrimination of representations is enhanced. Extensive experiments on three public datasets demonstrate that our method outperforms SOTA baselines by a large margin. Meanwhile, our method requires minimal parameters of three set of embeddings (user, bundle, and item) and the computational costs are largely reduced due to more concise graph structure and graph learning module. In addition, various ablation and model studies demystify the working mechanism and justify our hypothesis. Codes and datasets are available at https://github.com/mysbupt/CrossCBR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源