论文标题

卡索克:在特定于源后门防御墙中针对DNN的可行后门攻击

CASSOCK: Viable Backdoor Attacks against DNN in The Wall of Source-Specific Backdoor Defences

论文作者

Wang, Shang, Gao, Yansong, Fu, Anmin, Zhang, Zhi, Zhang, Yuqing, Susilo, Willy, Liu, Dongxi

论文摘要

作为对深神经网络(DNNS)的关键威胁,后门攻击可以分为两种类型,即源 - 不合骨后门攻击(SABAS)和特定于源的后门攻击(SSBAS)。与传统的萨巴斯(Sabas)相比,ssbas更加先进,因为它们在绕过有效反对萨巴斯的主流对策方面具有更高的偷偷摸摸。但是,现有的SSBA遭受了两个主要局限性。首先,他们几乎无法在ASR(攻击成功率)和FPR(假阳性率)之间取得良好的权衡。此外,最先进的对策(例如扫描)可以有效地检测它们。为了解决上述局限性,我们提出了一类新的可行源特异性后门攻击,以卡索克为生。我们的关键见解是,在创建中毒数据并涵盖SSBA中的数据时,触发设计在证明可行的特定于源攻击方面起着至关重要的作用,现有SSBA尚未考虑到可行的特定于源攻击。有了这个见解,我们将重点放在触发透明度和内容上时,当将触发器用于中毒的数据集时,样品具有攻击者针对的标签,并覆盖了样品具有地面真实标签的数据集。具体来说,我们实现$ cassock_ {trans} $和$ cassock_ {cont} $。尽管它们都是正交的,但它们彼此互补,产生了更强大的攻击,称为$ CASSOCK_ {COMP} $,并进一步提高了攻击性能和隐身性。我们对四个受欢迎的数据集和三个SOTA防御的三个基于$ CASSOCK $的攻击进行了全面评估。与代表性的SSBA作为基线($ SSBA_ {base} $)相比,基于$ CASCOCK $的攻击已显着提高了攻击性能,即具有可比的CDA(清洁数据精度),即较高的ASR和Lower FPR。此外,基于$ CASCOCK $的攻击有效地绕过了SOTA防御,而$ SSBA_ {base} $不能。

As a critical threat to deep neural networks (DNNs), backdoor attacks can be categorized into two types, i.e., source-agnostic backdoor attacks (SABAs) and source-specific backdoor attacks (SSBAs). Compared to traditional SABAs, SSBAs are more advanced in that they have superior stealthier in bypassing mainstream countermeasures that are effective against SABAs. Nonetheless, existing SSBAs suffer from two major limitations. First, they can hardly achieve a good trade-off between ASR (attack success rate) and FPR (false positive rate). Besides, they can be effectively detected by the state-of-the-art (SOTA) countermeasures (e.g., SCAn). To address the limitations above, we propose a new class of viable source-specific backdoor attacks, coined as CASSOCK. Our key insight is that trigger designs when creating poisoned data and cover data in SSBAs play a crucial role in demonstrating a viable source-specific attack, which has not been considered by existing SSBAs. With this insight, we focus on trigger transparency and content when crafting triggers for poisoned dataset where a sample has an attacker-targeted label and cover dataset where a sample has a ground-truth label. Specifically, we implement $CASSOCK_{Trans}$ and $CASSOCK_{Cont}$. While both they are orthogonal, they are complementary to each other, generating a more powerful attack, called $CASSOCK_{Comp}$, with further improved attack performance and stealthiness. We perform a comprehensive evaluation of the three $CASSOCK$-based attacks on four popular datasets and three SOTA defenses. Compared with a representative SSBA as a baseline ($SSBA_{Base}$), $CASSOCK$-based attacks have significantly advanced the attack performance, i.e., higher ASR and lower FPR with comparable CDA (clean data accuracy). Besides, $CASSOCK$-based attacks have effectively bypassed the SOTA defenses, and $SSBA_{Base}$ cannot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源