论文标题
在手机上进行图像分类的深度学习管道
Deep learning pipeline for image classification on mobile phones
论文作者
论文摘要
本文提出并记录了使用手机对图像进行分类的机器学习框架和教程。与计算机相比,当部署在手机上时,深度学习模型性能的性能会降低,并且需要一种系统的方法来找到在计算机和手机上最佳性能的模型。通过遵循所提出的管道,该管道包括各种计算工具,简单的程序配方和技术考虑因素,可以将深度学习医学图像分类的力量带到移动设备上,并有可能解锁应用程序的新域。该管道在四个不同的公开数据集上进行了证明:X射线射线,Covid CT扫描,叶子和结直肠癌。我们使用了两个应用程序开发框架:Tensorflow Lite(实时测试)和颤动(数字图像测试)来测试所提出的管道。我们发现,将深度学习模型转移到手机受到硬件和分类精度下降的限制。为了解决此问题,我们提出了这条管道,以找到用于手机的优化模型。最后,我们讨论了与手机上部署深度学习模型有关的其他应用程序和计算问题,包括实时分析和图像预处理。我们认为,相关的文档和代码可以帮助医师和医学专家开发用于分发的医学图像分类应用程序。
This article proposes and documents a machine-learning framework and tutorial for classifying images using mobile phones. Compared to computers, the performance of deep learning model performance degrades when deployed on a mobile phone and requires a systematic approach to find a model that performs optimally on both computers and mobile phones. By following the proposed pipeline, which consists of various computational tools, simple procedural recipes, and technical considerations, one can bring the power of deep learning medical image classification to mobile devices, potentially unlocking new domains of applications. The pipeline is demonstrated on four different publicly available datasets: COVID X-rays, COVID CT scans, leaves, and colorectal cancer. We used two application development frameworks: TensorFlow Lite (real-time testing) and Flutter (digital image testing) to test the proposed pipeline. We found that transferring deep learning models to a mobile phone is limited by hardware and classification accuracy drops. To address this issue, we proposed this pipeline to find an optimized model for mobile phones. Finally, we discuss additional applications and computational concerns related to deploying deep-learning models on phones, including real-time analysis and image preprocessing. We believe the associated documentation and code can help physicians and medical experts develop medical image classification applications for distribution.