论文标题
通过独立的二进制近似,对分类模型的易于变异推断
Easy Variational Inference for Categorical Models via an Independent Binary Approximation
论文作者
论文摘要
我们对广义线性模型(GLM)进行分类数据的易访问贝叶斯分析。到目前为止,由于使用共轭辅助变量方法,由于非偶和性或强大后依赖性,GLM很难扩展到几十个类别。我们为分类数据定义了一类新的GLM,称为分类二元(CB)模型。每个CB模型的可能性都受二元似然产物的限制,表明自然后近似。这种近似使推理变得直接而快速;使用众所周知的辅助变量进行概率或逻辑回归,二进制模型的乘积允许共轭闭合形式变异推断,这些变量变异推断在类别之间令人尴尬地平行,并且与类别排序不变。此外,独立的二进制模型同时近似于多个CB模型。平均这些模型可以提高任何给定数据集的近似质量。我们表明,我们的进近量表范围为数千个类别,在实现固定的预测质量的时间内,诸如自动分化变异推理(ADVI)(ADVI)(ADVI)(ADVI)(ADVI)(ADVI)(ADVI)(ADVI)等竞争对手的表现都优于后验估计。
We pursue tractable Bayesian analysis of generalized linear models (GLMs) for categorical data. Thus far, GLMs are difficult to scale to more than a few dozen categories due to non-conjugacy or strong posterior dependencies when using conjugate auxiliary variable methods. We define a new class of GLMs for categorical data called categorical-from-binary (CB) models. Each CB model has a likelihood that is bounded by the product of binary likelihoods, suggesting a natural posterior approximation. This approximation makes inference straightforward and fast; using well-known auxiliary variables for probit or logistic regression, the product of binary models admits conjugate closed-form variational inference that is embarrassingly parallel across categories and invariant to category ordering. Moreover, an independent binary model simultaneously approximates multiple CB models. Bayesian model averaging over these can improve the quality of the approximation for any given dataset. We show that our approach scales to thousands of categories, outperforming posterior estimation competitors like Automatic Differentiation Variational Inference (ADVI) and No U-Turn Sampling (NUTS) in the time required to achieve fixed prediction quality.