论文标题
新颖对称性超出形状不变性的超电势
Superpotential for novel symmetry beyond shape invariance
论文作者
论文摘要
我们提出了一个新的“超电势”,发现超对称能量条件和相关形状不变性条件均保持有效。另一方面,新的能量条件$ e_ {n}^{+} - e_ {n}^{( - )} = 2 $在两个合作伙伴hamiltonian $ h^{(\ pm)} $之间出现。数学证明支持当前的发现,并提供了示例。据观察,当超电势与不连续性或失真相关联时,SUSY能量条件和形状不变性条件将不再保持良好。
We propose a new "superpotential" and find that neither the supersymmetric energy conditions nor the associated shape invariance condition remain valid. On the other hand a new energy condition $E_{n}^{+}-E_{n}^{(-)}=2$ between the two partner Hamiltonian $H^{(\pm)}$ emerges. Mathematical proof supported the present findings with examples are presented. It is observed that, when the superpotential is associated with discontinuity or distortion, SUSY energy conditions and the shape invariance condition will no longer hold good.