论文标题
加权等级聚合的重量集分解:一种可解释和视觉决策支持工具
Weight Set Decomposition for Weighted Rank Aggregation: An interpretable and visual decision support tool
论文作者
论文摘要
解释或汇总多个排名的问题是许多现实世界应用程序共有的。也许最简单,最常见的方法是加权等级聚合,其中A(凸)权重应用于每个输入排名,然后再订购。本文介绍了一种可视化和显示加权等级聚合方法的排名信息的新工具。传统上,等级汇总的目的是总结输入排名中的信息,并提供一个最终排名,希望比任何一个输入排名都更准确或真实。尽管这样的汇总排名对于许多应用程序很有用,但它也掩盖了信息。在本文中,我们显示了由于其结构而用于加权等级聚合问题的大量信息。我们将重量集分解应用于凸乘数集,研究用于理解该分解的特性,并可视化冷漠区域。该方法揭示了信息 - 否则汇总排名却崩溃了 - 这是一种有用,可解释和直观的决策支持工具。其中包括多个说明性示例,以及用于计算重量集分解的启发式和精确算法。
The problem of interpreting or aggregating multiple rankings is common to many real-world applications. Perhaps the simplest and most common approach is a weighted rank aggregation, wherein a (convex) weight is applied to each input ranking and then ordered. This paper describes a new tool for visualizing and displaying ranking information for the weighted rank aggregation method. Traditionally, the aim of rank aggregation is to summarize the information from the input rankings and provide one final ranking that hopefully represents a more accurate or truthful result than any one input ranking. While such an aggregated ranking is, and clearly has been, useful to many applications, it also obscures information. In this paper, we show the wealth of information that is available for the weighted rank aggregation problem due to its structure. We apply weight set decomposition to the set of convex multipliers, study the properties useful for understanding this decomposition, and visualize the indifference regions. This methodology reveals information--that is otherwise collapsed by the aggregated ranking--into a useful, interpretable, and intuitive decision support tool. Included are multiple illustrative examples, along with heuristic and exact algorithms for computing the weight set decomposition.