论文标题
纤维较小的刚度更高:3D打印复合材料的端到端纤维路径优化
More Stiffness with Less Fiber: End-to-End Fiber Path Optimization for 3D-Printed Composites
论文作者
论文摘要
在3D打印中,刚性纤维(例如碳纤维)可以增强刚度有限的热塑性聚合物。但是,现有的商业数字制造软件仅提供一些简单的光纤布局算法,这些算法仅使用形状的几何形状。在这项工作中,我们构建了一种自动化的纤维路径计划算法,该算法最大化了给定指定的外部负载的3D打印的刚度。我们将其形式化为一个优化问题:目标函数旨在测量物体的刚度,同时正规化纤维路径的某些特性(例如平滑度)。为了初始化每个纤维路径,我们使用有限元分析来计算物体上的应力场,并朝着应力场方向贪婪地“行走”。然后,我们应用基于梯度的优化算法,该算法使用伴随方法来计算相对于光纤布局的刚度梯度。我们将我们的方法在模拟和现实世界实验中比较了三个基准:(1)由Markforged开发的领先的数字制造软件包生成的同心光纤环,(2)在模拟应力场上提取(即无需优化的方法),以及(3)通过贪婪的压力在平方的范围内计算出贪婪的压力。结果表明,我们算法产生的具有纤维路径的物体实现了更大的刚度,同时使用纤维少于基准 - 我们的算法可以改善对物体刚度的帕累托前沿,这是纤维使用的函数。消融研究表明,与单分辨率优化相比,可行的纤维路径和优化的稳定性需要平滑正常器,而多分辨率优化有助于减少运行时间。
In 3D printing, stiff fibers (e.g., carbon fiber) can reinforce thermoplastic polymers with limited stiffness. However, existing commercial digital manufacturing software only provides a few simple fiber layout algorithms, which solely use the geometry of the shape. In this work, we build an automated fiber path planning algorithm that maximizes the stiffness of a 3D print given specified external loads. We formalize this as an optimization problem: an objective function is designed to measure the stiffness of the object while regularizing certain properties of fiber paths (e.g., smoothness). To initialize each fiber path, we use finite element analysis to calculate the stress field on the object and greedily "walk" in the direction of the stress field. We then apply a gradient-based optimization algorithm that uses the adjoint method to calculate the gradient of stiffness with respect to fiber layout. We compare our approach, in both simulation and real-world experiments, to three baselines: (1) concentric fiber rings generated by Eiger, a leading digital manufacturing software package developed by Markforged, (2) greedy extraction on the simulated stress field (i.e., our method without optimization), and (3) the greedy algorithm on a fiber orientation field calculated by smoothing the simulated stress fields. The results show that objects with fiber paths generated by our algorithm achieve greater stiffness while using less fiber than the baselines--our algorithm improves the Pareto frontier of object stiffness as a function of fiber usage. Ablation studies show that the smoothing regularizer is needed for feasible fiber paths and stability of optimization, and multi-resolution optimization helps reduce the running time compared to single-resolution optimization.