论文标题

部分可观测时空混沌系统的无模型预测

Revisiting excitation gaps in the fractional quantum Hall effect

论文作者

Zhao, Tongzhou, Kudo, Koji, Faugno, W. N., Balram, Ajit C., Jain, J. K.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Recent systematic measurements of the quantum well width dependence of the excitation gaps of fractional quantum Hall states in high mobility samples [Villegas Rosales {\it et al.}, Phys. Rev. Lett. {\bf 127}, 056801 (2021)] open the possibility of a better quantitative understanding of this important issue. We present what we believe to be accurate theoretical gaps including the effects of finite width and Landau level (LL) mixing. While theory captures the width dependence, there still remains a deviation between the calculated and the measured gaps, presumably caused by disorder. It is customary to model the experimental gaps of the $n/(2n\pm 1)$ states as $Δ_{n/(2n\pm 1)} = Ce^2/[(2n\pm 1)\varepsilon l]-Γ$, where $\varepsilon$ is the dielectric constant of the background semiconductor and $l$ is the magnetic length; the first term is interpreted as the cyclotron energy of composite fermions and $Γ$ as a disorder-induced broadening of composite-fermion LLs. Fitting the gaps for various fractional quantum Hall states, we find that $Γ$ can be nonzero even in the absence of disorder.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源