论文标题
部分可观测时空混沌系统的无模型预测
Skeleton-based Action Recognition via Temporal-Channel Aggregation
论文作者
论文摘要
基于骨架的动作识别方法受到时空骨骼图的语义提取的限制。但是,目前的方法在有效地结合时间和空间图尺寸的特征方面很难,并且一侧往往较厚,而另一侧则很薄。在本文中,我们提出了一个时间通道聚合图卷积网络(TCA-GCN),以动态有效地学习基于骨架动作识别的不同时间和通道维度中的空间和时间拓扑。我们使用时间聚合模块来学习时间维特征和通道聚合模块,以有效地将空间动态通道拓扑特征与时间动态拓扑特征相结合。此外,我们在时间建模上提取多尺度的骨骼特征,并将其与注意机制融合在一起。广泛的实验表明,在NTU RGB+D,NTU RGB+D 120和NW-UCLA数据集上,我们的模型结果优于最先进的方法。
Skeleton-based action recognition methods are limited by the semantic extraction of spatio-temporal skeletal maps. However, current methods have difficulty in effectively combining features from both temporal and spatial graph dimensions and tend to be thick on one side and thin on the other. In this paper, we propose a Temporal-Channel Aggregation Graph Convolutional Networks (TCA-GCN) to learn spatial and temporal topologies dynamically and efficiently aggregate topological features in different temporal and channel dimensions for skeleton-based action recognition. We use the Temporal Aggregation module to learn temporal dimensional features and the Channel Aggregation module to efficiently combine spatial dynamic channel-wise topological features with temporal dynamic topological features. In addition, we extract multi-scale skeletal features on temporal modeling and fuse them with an attention mechanism. Extensive experiments show that our model results outperform state-of-the-art methods on the NTU RGB+D, NTU RGB+D 120, and NW-UCLA datasets.