论文标题

部分可观测时空混沌系统的无模型预测

Variational inference via Wasserstein gradient flows

论文作者

Lambert, Marc, Chewi, Sinho, Bach, Francis, Bonnabel, Silvère, Rigollet, Philippe

论文摘要

与马尔可夫链蒙特卡洛(MCMC)方法一起,变异推理(VI)已成为大规模贝叶斯推断的中央计算方法。 VI不是从真正的后部$π$取样,而是旨在生产一个简单但有效的近似值$ \hatπ$到$π$,对于摘要统计数据,易于计算。但是,与经过良好研究的MCMC方法论不同,VI的算法保证仍然相对较少地理解。在这项工作中,我们提出了VI的原则方法,其中$ \hatπ$被视为高斯或高斯人的混合物,它基于bures bures on Bures的梯度流理论 - 高斯措施的空间。类似于MCMC,当$π$是log-concave时,它具有强大的理论保证。

Along with Markov chain Monte Carlo (MCMC) methods, variational inference (VI) has emerged as a central computational approach to large-scale Bayesian inference. Rather than sampling from the true posterior $π$, VI aims at producing a simple but effective approximation $\hat π$ to $π$ for which summary statistics are easy to compute. However, unlike the well-studied MCMC methodology, algorithmic guarantees for VI are still relatively less well-understood. In this work, we propose principled methods for VI, in which $\hat π$ is taken to be a Gaussian or a mixture of Gaussians, which rest upon the theory of gradient flows on the Bures--Wasserstein space of Gaussian measures. Akin to MCMC, it comes with strong theoretical guarantees when $π$ is log-concave.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源