论文标题

霍弗(Hofer

Hofer's distance between eggbeaters and autonomous Hamiltonian diffeomorphisms on surfaces

论文作者

Khanevsky, Michael

论文摘要

令$σ$为配备区域表格的属$ g \ geq 1 $的紧凑表面。我们构建了蛋be骨哈密顿式的差异性,这些差异是与自主汉密尔顿人组合的Hofer指标中任意相距甚远的。该结果已经以$ g \ geq 2 $而闻名(我们的论点提供了一种替代性,与以前的出版物相比非常简单),而情况$ g = 1 $是新的。

Let $Σ$ be a compact surface of genus $g \geq 1$ equipped with an area form. We construct eggbeater Hamiltonian diffeomorphisms which lie arbitrarily far in the Hofer metric from the set of autonomous Hamiltonians. This result is already known for $g \geq 2$ (our argument provides an alternative, very simple construction compared to previous publications) while the case $g = 1$ is new.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源