论文标题

HyperMAML:用超网络的深层模型很少改编

HyperMAML: Few-Shot Adaptation of Deep Models with Hypernetworks

论文作者

Przewięźlikowski, M., Przybysz, P., Tabor, J., Zięba, M., Spurek, P.

论文摘要

几个学习方法的目的是训练模型,这些模型可以根据少量数据轻松适应以前看不见的任务。最受欢迎,最优雅的少数学习方法之一是模型敏捷的元学习(MAML)。这种方法背后的主要思想是学习元模型的一般权重,该权重进一步适应了少数梯度步骤中的特定问题。但是,该模型的主要限制在于以下事实:更新过程是通过基于梯度的优化实现的。因此,MAML不能总是在一个甚至几个梯度迭代中将权重改为基本水平。另一方面,使用许多梯度步骤会导致一个复杂且耗时的优化程序,这很难在实践中训练,并且可能导致过度拟合。在本文中,我们提出了HyperMAML,这是MAML的新型概括,其中更新过程的训练也是模型的一部分。也就是说,在HyperMAML中,我们没有用梯度下降来更新权重,而是为此目的使用可训练的超级净机。因此,在此框架中,该模型可以生成重大更新的范围不限于固定数量的梯度步骤。实验表明,超级MAML始终胜过MAML,并且在许多标准的少数次学习基准中,与其他最先进的技术相当地执行。

The aim of Few-Shot learning methods is to train models which can easily adapt to previously unseen tasks, based on small amounts of data. One of the most popular and elegant Few-Shot learning approaches is Model-Agnostic Meta-Learning (MAML). The main idea behind this method is to learn the general weights of the meta-model, which are further adapted to specific problems in a small number of gradient steps. However, the model's main limitation lies in the fact that the update procedure is realized by gradient-based optimisation. In consequence, MAML cannot always modify weights to the essential level in one or even a few gradient iterations. On the other hand, using many gradient steps results in a complex and time-consuming optimization procedure, which is hard to train in practice, and may lead to overfitting. In this paper, we propose HyperMAML, a novel generalization of MAML, where the training of the update procedure is also part of the model. Namely, in HyperMAML, instead of updating the weights with gradient descent, we use for this purpose a trainable Hypernetwork. Consequently, in this framework, the model can generate significant updates whose range is not limited to a fixed number of gradient steps. Experiments show that HyperMAML consistently outperforms MAML and performs comparably to other state-of-the-art techniques in a number of standard Few-Shot learning benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源