论文标题
Caleb:一个有条件的对抗学习框架,以增强机器人检测
CALEB: A Conditional Adversarial Learning Framework to Enhance Bot Detection
论文作者
论文摘要
在过去的几年中,在线社交网络(OSN)的高增长使自动帐户(称为社交机器人)获得了基础。正如其他研究人员所强调的那样,这些机器人中的大多数具有恶意目的,并且倾向于模仿人类的行为,从而在OSN平台上构成了高级安全威胁。此外,最近的研究表明,社交机器人随着时间的流逝而发展,通过改革和重塑不可预见和复杂的特征,使它们能够避免当前的机器学习最先进的机器人检测系统。这项工作是建立自适应机器人检测方法的迫切需要的动机,以便主动捕获不看到的不断发展的机器人,以实现更健康的OSN相互作用。与大多数早期监督的ML方法相反,该方法受到无法有效检测新类型的机器人的限制,本文提出了Caleb,Caleb是一个基于条件生成的对抗网络(CGAN)及其扩展,辅助分类器GAN(AC-GAN)的稳健端到端的主动框架,以模拟bot bot Extuction Instical Instance Instance Instance Instance Instictics Instctions Instctions bot bot bot bot bot bot bot bot bot bot bot bot bot bot bot bot bottical bottical bottical bottical。这些模拟的演变机器人增加了现有的机器人数据集,因此在出现之前增强了新兴的机器人的检测!此外,我们表明,我们的增强方法越过了其他早期的增强技术,这些技术无法模拟不断发展的机器人。在建立良好的公共机器人数据集上进行了广泛的实验,这表明我们的方法在发现新的看不见的机器人方面可提高高达10%的性能。最后,将AC-GAN判别器用作机器人检测器的使用优于以前的ML方法,展示了我们端到端框架的效率。
The high growth of Online Social Networks (OSNs) over the last few years has allowed automated accounts, known as social bots, to gain ground. As highlighted by other researchers, most of these bots have malicious purposes and tend to mimic human behavior, posing high-level security threats on OSN platforms. Moreover, recent studies have shown that social bots evolve over time by reforming and reinventing unforeseen and sophisticated characteristics, making them capable of evading the current machine learning state-of-the-art bot detection systems. This work is motivated by the critical need to establish adaptive bot detection methods in order to proactively capture unseen evolved bots towards healthier OSNs interactions. In contrast with most earlier supervised ML approaches which are limited by the inability to effectively detect new types of bots, this paper proposes CALEB, a robust end-to-end proactive framework based on the Conditional Generative Adversarial Network (CGAN) and its extension, Auxiliary Classifier GAN (AC-GAN), to simulate bot evolution by creating realistic synthetic instances of different bot types. These simulated evolved bots augment existing bot datasets and therefore enhance the detection of emerging generations of bots before they even appear! Furthermore, we show that our augmentation approach overpasses other earlier augmentation techniques which fail at simulating evolving bots. Extensive experimentation on well established public bot datasets, show that our approach offers a performance boost of up to 10% regarding the detection of new unseen bots. Finally, the use of the AC-GAN Discriminator as a bot detector, has outperformed former ML approaches, showcasing the efficiency of our end to end framework.