论文标题

大脑图像的生成衰老与差异登记

Generative Aging of Brain Images with Diffeomorphic Registration

论文作者

Fu, Jingru, Tzortzakakis, Antonios, Barroso, José, Westman, Eric, Ferreira, Daniel, Moreno, Rodrigo

论文摘要

分析和预测大脑衰老对于早期预后和准确诊断认知疾病至关重要。神经影像学技术(例如磁共振成像(MRI))提供了一种无创的方法,可以观察大脑内的衰老过程。随着纵向图像数据收集,数据密集型人工智能(AI)算法已被用于检查大脑衰老。但是,现有的最新算法往往仅限于群体级的预测,并遭受虚幻的预测。本文提出了一种生成纵向MRI扫描的方法,该方法可以捕获主体特异性神经退行性变化并保留衰老中的解剖学合理性。所提出的方法是在差异登记的框架内开发的,并依赖于三个关键的新型技术进步来产生主题级别的解剖学上可行的预测:i)基于注册的计算高效且具有个性化的生成框架; ii)基于生物线性衰老进展的衰老生成模块; iii)质量控制模块,以适合发电任务的注册。我们的方法对来自三个不同队列的796名参与者的2662 T1加权(T1-W)MRI扫描进行了评估。首先,我们应用了6个常用标准来证明所提出方法的衰老模拟能力。其次,我们使用神经放射学家的定量测量和定性评估评估了合成图像的质量。总体而言,实验结果表明,所提出的方法可以产生解剖学上合理的预测,可用于增强纵向数据集,进而实现渴望数据的AI驱动医疗工具。

Analyzing and predicting brain aging is essential for early prognosis and accurate diagnosis of cognitive diseases. The technique of neuroimaging, such as Magnetic Resonance Imaging (MRI), provides a noninvasive means of observing the aging process within the brain. With longitudinal image data collection, data-intensive Artificial Intelligence (AI) algorithms have been used to examine brain aging. However, existing state-of-the-art algorithms tend to be restricted to group-level predictions and suffer from unreal predictions. This paper proposes a methodology for generating longitudinal MRI scans that capture subject-specific neurodegeneration and retain anatomical plausibility in aging. The proposed methodology is developed within the framework of diffeomorphic registration and relies on three key novel technological advances to generate subject-level anatomically plausible predictions: i) a computationally efficient and individualized generative framework based on registration; ii) an aging generative module based on biological linear aging progression; iii) a quality control module to fit registration for generation task. Our methodology was evaluated on 2662 T1-weighted (T1-w) MRI scans from 796 participants from three different cohorts. First, we applied 6 commonly used criteria to demonstrate the aging simulation ability of the proposed methodology; Secondly, we evaluated the quality of the synthetic images using quantitative measurements and qualitative assessment by a neuroradiologist. Overall, the experimental results show that the proposed method can produce anatomically plausible predictions that can be used to enhance longitudinal datasets, in turn enabling data-hungry AI-driven healthcare tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源