论文标题
嵌套的物理科学家
Nested sampling for physical scientists
论文作者
论文摘要
我们回顾了Skilling的嵌套采样(NS)算法,用于贝叶斯推断和更广泛的多维整合。在审查了NS的原理后,我们调查了在高维度实践实施有效NS算法的发展,包括从所谓的约束先验中采样的方法。我们概述了应用NS的方式,并描述了NS在三个科学领域的应用,在该领域中,该算法被证明是有用的:宇宙学,引力波天文学和材料科学。我们通过在使用NS时为最佳实践提出建议,并总结NS的潜在局限性和优化。
We review Skilling's nested sampling (NS) algorithm for Bayesian inference and more broadly multi-dimensional integration. After recapitulating the principles of NS, we survey developments in implementing efficient NS algorithms in practice in high-dimensions, including methods for sampling from the so-called constrained prior. We outline the ways in which NS may be applied and describe the application of NS in three scientific fields in which the algorithm has proved to be useful: cosmology, gravitational-wave astronomy, and materials science. We close by making recommendations for best practice when using NS and by summarizing potential limitations and optimizations of NS.