论文标题

跨语性结构化分析的知识增强的对抗模型

A Knowledge-Enhanced Adversarial Model for Cross-lingual Structured Sentiment Analysis

论文作者

Zhang, Qi, Zhou, Jie, Chen, Qin, Bai, Qingchun, Xiao, Jun, He, Liang

论文摘要

旨在提取持有人,表达式,目标和极性等复杂语义结构的结构性情感分析已从行业和学术界都广泛关注。不幸的是,现有的结构化情感分析数据集是指几种语言,并且相对较小,限制了神经网络模型的性能。在本文中,我们专注于跨语性的结构化情感分析任务,该任务旨在将知识从源语言转移到目标语言。值得注意的是,我们提出了具有隐式分布式和显式结构知识的知识增强对抗模型(\ texttt {keam}),以增强跨语义转移。首先,我们设计了一种对抗性嵌入适配器,以通过自适应地捕获不同多种语言嵌入的隐性语义信息来学习信息和健壮的表示形式。然后,我们提出了一个语法GCN编码器,以在多种语言之间传输显式语义信息(例如,通用依赖树)。我们在五个数据集上进行实验,并将\ texttt {keam}与监督和无监督方法进行比较。广泛的实验结果表明,我们的\ texttt {keam}模型在各种指标中的表现优于所有无监督的基准。

Structured sentiment analysis, which aims to extract the complex semantic structures such as holders, expressions, targets, and polarities, has obtained widespread attention from both industry and academia. Unfortunately, the existing structured sentiment analysis datasets refer to a few languages and are relatively small, limiting neural network models' performance. In this paper, we focus on the cross-lingual structured sentiment analysis task, which aims to transfer the knowledge from the source language to the target one. Notably, we propose a Knowledge-Enhanced Adversarial Model (\texttt{KEAM}) with both implicit distributed and explicit structural knowledge to enhance the cross-lingual transfer. First, we design an adversarial embedding adapter for learning an informative and robust representation by capturing implicit semantic information from diverse multi-lingual embeddings adaptively. Then, we propose a syntax GCN encoder to transfer the explicit semantic information (e.g., universal dependency tree) among multiple languages. We conduct experiments on five datasets and compare \texttt{KEAM} with both the supervised and unsupervised methods. The extensive experimental results show that our \texttt{KEAM} model outperforms all the unsupervised baselines in various metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源