论文标题

使用3D SIFT和离散的SP对称记录图像量

Registering Image Volumes using 3D SIFT and Discrete SP-Symmetry

论文作者

Chauvin, Laurent, Wells III, William, Toews, Matthew

论文摘要

本文建议将3D的本地图像特征扩展到离散对称性,包括空间轴和图像对比度的不变性。二进制功能符号$ s \ in \ { - 1,+1 \} $定义为拉普拉斯运算符$ \ nabla^2 $的标志,并用于获取一个描述符,以形象符号反转$ s \ rightarrow -s $ s $ s $ and 3d parity的描述符(x,x,x,y,z)或SP对称。 Sp-Ammetry适用于任意标量图像字段$ i:r^3 \ rightArrow r^1 $映射3D坐标$(x,x,y,z)\ in r^3 $ in r^3 $ in r^3 $ in r^3 $ in r^1 in r^1 $ in R^1 $,概述了众所周知的荷兰(cp-symmetry(cp-symmetry formement)ementerry(cp-smmetry for to in consymertry to niment)。特征方向被建模为一组离散状态,对应于潜在的轴反射,而与图像对比反转无关。两个主要的轴向量来自图像观测值,并有可能受到反射的影响,第三轴是由右手规则定义的轴向向量。除了标准(位置,比例,方向)几何形状外,还可以增强具有符号的局部特征性能,从而导致描述符,这些描述符在协调反射和强度对比度反演方面不变。基于二进制特征对应的模型,将特征属性纳入了基于概率的基于概率的注册为对称内核。使用众所周知的相干点漂移(CPD)算法的实验表明,SIFT-CPD内核实现了人脑和CT胸部的最准确和快速的注册,包括不同强度对比度的多种MRI模态,以及局部局部变化异常,例如肿瘤或肿瘤。 SIFT-CPD图像注册对于输入数据的全局缩放,旋转和翻译以及图像强度反转是不变的。

This paper proposes to extend local image features in 3D to include invariance to discrete symmetry including inversion of spatial axes and image contrast. A binary feature sign $s \in \{-1,+1\}$ is defined as the sign of the Laplacian operator $\nabla^2$, and used to obtain a descriptor that is invariant to image sign inversion $s \rightarrow -s$ and 3D parity transforms $(x,y,z)\rightarrow(-x,-y,-z)$, i.e. SP-invariant or SP-symmetric. SP-symmetry applies to arbitrary scalar image fields $I: R^3 \rightarrow R^1$ mapping 3D coordinates $(x,y,z) \in R^3$ to scalar intensity $I(x,y,z) \in R^1$, generalizing the well-known charge conjugation and parity symmetry (CP-symmetry) applying to elementary charged particles. Feature orientation is modeled as a set of discrete states corresponding to potential axis reflections, independently of image contrast inversion. Two primary axis vectors are derived from image observations and potentially subject to reflection, and a third axis is an axial vector defined by the right-hand rule. Augmenting local feature properties with sign in addition to standard (location, scale, orientation) geometry leads to descriptors that are invariant to coordinate reflections and intensity contrast inversion. Feature properties are factored in to probabilistic point-based registration as symmetric kernels, based on a model of binary feature correspondence. Experiments using the well-known coherent point drift (CPD) algorithm demonstrate that SIFT-CPD kernels achieve the most accurate and rapid registration of the human brain and CT chest, including multiple MRI modalities of differing intensity contrast, and abnormal local variations such as tumors or occlusions. SIFT-CPD image registration is invariant to global scaling, rotation and translation and image intensity inversions of the input data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源