论文标题

方向感知模型的预测性控制,并适应动态人形动态行走

Orientation-Aware Model Predictive Control with Footstep Adaptation for Dynamic Humanoid Walking

论文作者

Ding, Yanran, Khazoom, Charles, Chignoli, Matthew, Kim, Sangbae

论文摘要

本文提出了一个新型的方向感知模型预测控制(MPC),用于动态人类动态行走,该模型可以在线规划脚步位置。这项工作不是点质量模型,而是使用增强的单个刚体模型(ASRBM),以使MPC能够在统一的优化框架内利用定向动力学和踩踏策略。将脚步位置作为ASRBM中决策变量的一部分,MPC可以推理在运动学约束中踏上阶梯。任务空间控制器(TSC)跟踪MPC的身体姿势和摆动腿引用,同时利用人形生物的全阶动力学。提出的控制框架适用于实时应用程序,因为MPC和TSC均以二次程序进行配合。仿真研究表明,与使用点质量模型的最新控制器相比,基于方向感知的MPC框架对外部扭矩干扰更为强大,尤其是当躯干经历大型角移动时。相同的控制框架还可以使MIT类人体能够克服不均匀的地形,例如穿越波浪场。

This paper proposes a novel orientation-aware model predictive control (MPC) for dynamic humanoid walking that can plan footstep locations online. Instead of a point-mass model, this work uses the augmented single rigid body model (aSRBM) to enable the MPC to leverage orientation dynamics and stepping strategy within a unified optimization framework. With the footstep location as part of the decision variables in the aSRBM, the MPC can reason about stepping within the kinematic constraints. A task-space controller (TSC) tracks the body pose and swing leg references output from the MPC, while exploiting the full-order dynamics of the humanoid. The proposed control framework is suitable for real-time applications since both MPC and TSC are formulated as quadratic programs. Simulation investigations show that the orientation-aware MPC-based framework is more robust against external torque disturbance compared to state-of-the-art controllers using the point mass model, especially when the torso undergoes large angular excursion. The same control framework can also enable the MIT Humanoid to overcome uneven terrains, such as traversing a wave field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源