论文标题
接近量子计算平台上的最佳纠缠集体测量
Approaching optimal entangling collective measurements on quantum computing platforms
论文作者
论文摘要
纠缠是量子力学的基本特征,并具有增强计量和通信的巨大希望。到目前为止,量子计量学的重点是产生高度纠缠的量子状态,这些量子状态比经典实现的范围更高。但是,为了达到多参数量子计量学和量子信息处理任务的最终限制,必须进行集体测量,从而在量子状态的多个副本之间产生纠缠。在这里,我们在实验上证明了理论上最佳的单拷贝集合测量,以同时估计两个非公认的Qubit旋转。这使我们能够实施量子增强的感应,为高水平的矫正性,计量学的收益持续存在,并为解释不确定性原理的解释提供基本见解。我们对超导,被困的离子和光子系统实施最佳测量,提供了未来量子增强的传感网络的表现。
Entanglement is a fundamental feature of quantum mechanics and holds great promise for enhancing metrology and communications. Much of the focus of quantum metrology so far has been on generating highly entangled quantum states that offer better sensitivity, per resource, than what can be achieved classically. However, to reach the ultimate limits in multi-parameter quantum metrology and quantum information processing tasks, collective measurements, which generate entanglement between multiple copies of the quantum state, are necessary. Here, we experimentally demonstrate theoretically optimal single- and two-copy collective measurements for simultaneously estimating two non-commuting qubit rotations. This allows us to implement quantum-enhanced sensing, for which the metrological gain persists for high levels of decoherence, and to draw fundamental insights about the interpretation of the uncertainty principle. We implement our optimal measurements on superconducting, trapped-ion and photonic systems, providing an indication of how future quantum-enhanced sensing networks may look.