论文标题

超越浆果阶段:量子状态的外部几何形状

Beyond the Berry Phase: Extrinsic Geometry of Quantum States

论文作者

Avdoshkin, Alexander, Popov, Fedor K.

论文摘要

考虑一组量子状态$ | ψ(x)\ rangle $由$ x $参数化,从某些参数空间$ m $中获取。我们演示了状态流形的所有几何属性如何通过标量规数的bargmann不变性$ p^{(3)}(x_1,x_1,x_2,x_3)= \ operatoratorname {tr} [p(x_1) \langleψ(x)| $。从数学上讲,$ p(x)$将一张地图定义为从$ m $到复杂的投影空间$ \ mathbb {c} p^n $,并且该地图由$ p^{(3)}(x_1,x_2,x_3,x_3)$唯一地确定为对称转换。相位$ \ arg p^{(3)}(x_1,x_2,x_3)$可用于计算$ m $中任何闭环的浆果阶段,但是,正如我们证明的那样,它包含其他无法从任何浆果阶段确定的信息。当参数$ x_i $ of $ p^{(3)}(x_1,x_2,x_3)$彼此接近,并降低到领先顺序时,它将减少到熟悉的浆果曲率$ω$和量子$ g $。我们表明,在此扩展中,较高的订单在功能上独立于$ω$和$ g $,并且与$ m $的地图的外部属性有关$ \ mathbb {c} p^n $,从而引起了新的本地量规不变对象,例如完全对称的3 tensor $ t $。最后,我们展示了我们的结果如何立即应用于现代的极化理论,对调制场的电响应的计算以及平面带的物理。

Consider a set of quantum states $| ψ(x) \rangle$ parameterized by $x$ taken from some parameter space $M$. We demonstrate how all geometric properties of this manifold of states are fully described by a scalar gauge-invariant Bargmann invariant $P^{(3)}(x_1, x_2, x_3)=\operatorname{tr}[P(x_1) P(x_2)P(x_3)]$, where $P(x) = |ψ(x)\rangle \langleψ(x)|$. Mathematically, $P(x)$ defines a map from $M$ to the complex projective space $\mathbb{C}P^n$ and this map is uniquely determined by $P^{(3)}(x_1,x_2,x_3)$ up to a symmetry transformation. The phase $\arg P^{(3)}(x_1,x_2,x_3)$ can be used to compute the Berry phase for any closed loop in $M$, however, as we prove, it contains other information that cannot be determined from any Berry phase. When the arguments $x_i$ of $P^{(3)}(x_1,x_2,x_3)$ are taken close to each other, to the leading order, it reduces to the familiar Berry curvature $ω$ and quantum metric $g$. We show that higher orders in this expansion are functionally independent of $ω$ and $g$ and are related to the extrinsic properties of the map of $M$ into $\mathbb{C}P^n$ giving rise to new local gauge-invariant objects, such as the fully symmetric 3-tensor $T$. Finally, we show how our results have immediate applications to the modern theory of polarization, calculation of electrical response to a modulated field and physics of flat bands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源