论文标题
复杂指标在宇宙学中的使用
Uses of Complex Metrics in Cosmology
论文作者
论文摘要
复杂的指标是一把双刃剑:它们可以替换一个具有常规指标的奇异空间,例如包含大爆炸的剑,但它们也可以描述量子过渡可能比普通古典演化更有可能的非物理解决方案。在宇宙学的背景下,我们研究了维滕(基于Kontsevich&Segal和Louko&Sorkin的作品)提出的标准,以决定是否允许复杂的度量标准。由于使用Cauchy的定理可以自由变形复杂的指标,因此决定是否允许度量是否可以解决复杂的优化问题。我们描述了一种允许人们快速确定MinisuPerspace指标的允许性的方法。这使我们能够研究MinisuperSpace路径积分的脱壳结构,我们为各种边界条件进行了研究。经典过渡始终位于允许指标域的边界上,并且在为相应的引力路径积分定义适当的集成轮廓时必须注意。也许更令人惊讶的是,我们发现提出的量子(“隧道”)从签约到扩展的宇宙违反了允许性标准,因此可能是非事实的。相比之下,没有实体解决方案是允许的,而且我们证明,在初始动量条件下,可以在任意时空维度中明确描述允许指标上的集成轮廓。
Complex metrics are a double-edged sword: they allow one to replace singular spacetimes, such as those containing a big bang, with regular metrics, yet they can also describe unphysical solutions in which quantum transitions may be more probable than ordinary classical evolution. In the cosmological context, we investigate a criterion proposed by Witten (based on works of Kontsevich & Segal and of Louko & Sorkin) to decide whether a complex metric is allowable or not. Because of the freedom to deform complex metrics using Cauchy's theorem, deciding whether a metric is allowable in general requires solving a complicated optimisation problem. We describe a method that allows one to quickly determine the allowability of minisuperspace metrics. This enables us to study the off-shell structure of minisuperspace path integrals, which we investigate for various boundary conditions. Classical transitions always reside on the boundary of the domain of allowable metrics, and care must be taken in defining appropriate integration contours for the corresponding gravitational path integral. Perhaps more surprisingly, we find that proposed quantum (`tunnelling') transitions from a contracting to an expanding universe violate the allowability criterion and may thus be unphysical. No-boundary solutions, by contrast, are found to be allowable, and moreover we demonstrate that with an initial momentum condition an integration contour over allowable metrics may be explicitly described in arbitrary spacetime dimensions.