论文标题
在SCD半齿*牛顿方法的通用方程方法上
On the SCD semismooth* Newton method for generalized equations with application to a class of static contact problems with Coulomb friction
论文作者
论文摘要
在本文中,为广义方程式的数值解开发了\ SSSTAR Newton方法的变体,其中多值部分是所谓的SCD(包含衍生物的子空间)映射。在相当轻微的规律性要求下,该方法表现出(局部)超级线性收敛行为。从主要的概念算法中,得出了两个可实施的变体,其效率通过广义方程进行了对库仑摩擦的离散化静态接触问题进行建模。
In the paper, a variant of the \ssstar Newton method is developed for the numerical solution of generalized equations, in which the multi-valued part is a so-called SCD (subspace containing derivative) mapping. Under a rather mild regularity requirement, the method exhibits (locally) superlinear convergence behavior. From the main conceptual algorithm, two implementable variants are derived whose efficiency is tested via a generalized equation modeling a discretized static contact problem with Coulomb friction.