论文标题

FLICU:重症监护单元死亡率预测的联合学习工作流程

FLICU: A Federated Learning Workflow for Intensive Care Unit Mortality Prediction

论文作者

Mondrejevski, Lena, Miliou, Ioanna, Montanino, Annaclaudia, Pitts, David, Hollmén, Jaakko, Papapetrou, Panagiotis

论文摘要

尽管机器学习(ML)可以看作是改善临床决策,以支持改善药物计划,临床程序,诊断或药物处方的有前途的工具,但它仍然受到医疗保健数据的访问而限制。医疗保健数据很敏感,需要严格的隐私习惯,并且通常存储在数据孤岛中,从而使传统的机器学习具有挑战性。联合学习可以通过训练机器学习模型而不是数据筒仓来抵消这些限制,同时保持敏感数据的本地化。这项研究提出了ICU死亡率预测的联合学习工作流程。在此,通过将联合学习对预测ICU死亡率的二进制分类问题引入联合学习问题来研究联合学习作为集中机器学习和本地机器学习的替代方案的适用性。我们从模拟III数据库(实验室值和生命体征)中提取多变量时间序列数据,并基准测定四个深度顺序分类器(FRNN,LSTM,GRU和1DCNN)的预测性能,以改变患者历史记录窗口长度(8H,16H,16H,16H,24H,48H)和FL CAULTER(2,4,4,4,4,4,4)。实验表明,在AUPRC和F1得分方面,集中的机器学习和联合学习都可以相当。此外,联合方法显示出优于本地机器学习的性能。因此,在无法在医院之间共享敏感的患者数据时,联合方法可以看作是集中机器学习的有效且具有隐私性的替代品,用于对ICU的死亡进行分类。

Although Machine Learning (ML) can be seen as a promising tool to improve clinical decision-making for supporting the improvement of medication plans, clinical procedures, diagnoses, or medication prescriptions, it remains limited by access to healthcare data. Healthcare data is sensitive, requiring strict privacy practices, and typically stored in data silos, making traditional machine learning challenging. Federated learning can counteract those limitations by training machine learning models over data silos while keeping the sensitive data localized. This study proposes a federated learning workflow for ICU mortality prediction. Hereby, the applicability of federated learning as an alternative to centralized machine learning and local machine learning is investigated by introducing federated learning to the binary classification problem of predicting ICU mortality. We extract multivariate time series data from the MIMIC-III database (lab values and vital signs), and benchmark the predictive performance of four deep sequential classifiers (FRNN, LSTM, GRU, and 1DCNN) varying the patient history window lengths (8h, 16h, 24h, 48h) and the number of FL clients (2, 4, 8). The experiments demonstrate that both centralized machine learning and federated learning are comparable in terms of AUPRC and F1-score. Furthermore, the federated approach shows superior performance over local machine learning. Thus, the federated approach can be seen as a valid and privacy-preserving alternative to centralized machine learning for classifying ICU mortality when sharing sensitive patient data between hospitals is not possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源