论文标题

波尔加因常数进行谐波测量的下限

Lower bounds on Bourgain's constant for harmonic measure

论文作者

Badger, Matthew, Genschaw, Alyssa

论文摘要

对于每一个$ n \ geq 2 $,波尔加因的常数$ b_n $是最大的数字,因此(上)谐波度量的(上)Hausdorff尺寸最多是$ \ Mathbb {r Mathbb {r}^n $中每个域中的$ n-b_n $,定义了哪个谐波度量。 Jones and Wolff(1988)证明了$ b_2 = 1 $。当$ n \ geq 3 $时,布尔加因(1987)证明$ b_n> 0 $ and Wolff(1995)制作了示例,显示了$ b_n <1 $。精炼波尔加因的原始大纲,我们证明\ [b_n \ geq c \,n^{ - 2n(n-1)}/\ ln(n)\]对于所有$ n \ geq 3 $,其中$ c> 0 $是独立于$ n $的常数。我们进一步估计$ b_3 \ geq 1 \ times 10^{ - 15} $和$ b_4 \ geq 2 \ times 10^{ - 26} $。

For every $n\geq 2$, Bourgain's constant $b_n$ is the largest number such that the (upper) Hausdorff dimension of harmonic measure is at most $n-b_n$ for every domain in $\mathbb{R}^n$ on which harmonic measure is defined. Jones and Wolff (1988) proved that $b_2=1$. When $n\geq 3$, Bourgain (1987) proved that $b_n>0$ and Wolff (1995) produced examples showing $b_n<1$. Refining Bourgain's original outline, we prove that \[ b_n\geq c\,n^{-2n(n-1)}/\ln(n)\] for all $n\geq 3$, where $c>0$ is a constant that is independent of $n$. We further estimate $b_3\geq 1\times 10^{-15}$ and $b_4\geq 2\times 10^{-26}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源