论文标题
本地系统,代数叶子和纤维
Local Systems, Algebraic Foliations and Fibrations
论文作者
论文摘要
给定一个可半固定的纤维化$ f \ colon x \ to b $,我们在$ x $上引入了叶子$ \ mathcal {f} $之间的对应关系,$ x $和local Systems $ \ Mathbb {l} $上的$ b $。基于此对应关系,我们发现在叶面数据方面具有最大的合理连接纤维化的条件。在$ p $ forms的情况下,我们证明了Castelnuovo-de系列定理,并将其应用于何时在某些自然条件下,何时将$ p $ forms的线条捆绑起来会引起iitaka纤维化。
Given a semistable fibration $f\colon X\to B$ we introduce a correspondence between foliations $\mathcal{F}$ on $X$ and local systems $\mathbb{L}$ on $B$. Building up on this correspondence we find conditions that give maximal rationally connected fibrations in terms of data on the foliation. We prove the Castelnuovo-de Franchis theorem in the case of $p$-forms and we apply it to show when, under some natural conditions, a line subbundle of the sheaf of $p$-forms induces the Iitaka fibration.