论文标题

在某些本地凸FK空间

On some locally convex FK spaces

论文作者

Leonetti, Paolo, Orhan, Cihan

论文摘要

我们为矢量空间提供必要的和/或足够的条件,即真实序列的$ v $是一个fréchet空间,使每个坐标图是连续的,也就是说是本地凸出的FK空间。 特别是,我们表明,如果$ c_ {00}(\ Mathcal {i})\ subseteq v \ subseteq \ ell_ \ ell_ \ infty(\ Mathcal {i})$ for某些理想的$ \ nathcal {i} $ in $ v $ in Iff inf and n inf Iff infins,则为某些理想的$ \ nathcal {i} $ in Iff inf infind If,每个无限子集不属于$ \ Mathcal {i} $的ω$。

We provide necessary and/or sufficient conditions on vector spaces $V$ of real sequences to be a Fréchet space such that each coordinate map is continuous, that is, to be a locally convex FK space. In particular, we show that if $c_{00}(\mathcal{I})\subseteq V\subseteq \ell_\infty(\mathcal{I})$ for some ideal $\mathcal{I}$ on $ω$, then $V$ is a locally convex FK space if and only if there exists an infinite set $S\subseteq ω$ for which every infinite subset does not belong to $\mathcal{I}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源