论文标题
用于轨道角动量光谱测量的智能光电处理器
Intelligent optoelectronic processor for orbital angular momentum spectrum measurement
论文作者
论文摘要
轨道角动量(OAM)检测基于涡流束进展的几乎所有方面,例如通信和量子类比。传统方案因低速,复杂系统,有限检测范围而感到沮丧。在这里,我们设计了一个智能处理器,该处理器由光子和电子神经元组成,以快速,准确和直接的方式进行OAM光谱测量。具体而言,光学层从传入的光中提取无形的拓扑电荷信息,浅电子层预测了精确的光谱。光学计算的集成向我们保证了一个具有高速和能量效率的紧凑型单发系统,也不需要参考波和重复的步骤。重要的是,我们的处理器具有对各种结构化的光和不利影响的显着概括能力和鲁棒性。我们进一步提出了通用模型解释范式,以揭示混合处理器中的潜在物理机制,与常规的“黑盒”网络不同。这种解释算法可以提高检测效率。我们还完成了光电网络的理论,使其有效培训。这项工作不仅有助于探索OAM物理和应用,而且还广泛地激发了智能计算和物理效果之间的高级联系。
Orbital angular momentum (OAM) detection underpins almost all aspects of vortex beams' advances such as communication and quantum analogy. Conventional schemes are frustrated by low speed, complicated system, limited detection range. Here, we devise an intelligent processor composed of photonic and electronic neurons for OAM spectrum measurement in a fast, accurate and direct manner. Specifically, optical layers extract invisible topological charge information from incoming light and a shallow electronic layer predicts the exact spectrum. The integration of optical-computing promises us a compact single-shot system with high speed and energy efficiency, neither necessitating reference wave nor repetitive steps. Importantly, our processor is endowed with salient generalization ability and robustness against diverse structured light and adverse effects. We further raise a universal model interpretation paradigm to reveal the underlying physical mechanisms in the hybrid processor, as distinct from conventional 'black-box' networks. Such interpretation algorithm can improve the detection efficiency. We also complete the theory of optoelectronic network enabling its efficient training. This work not only contributes to the explorations on OAM physics and applications, and also broadly inspires the advanced links between intelligent computing and physical effects.