论文标题

Langevin模拟的退火算法与乘法噪声II:总变化

Convergence of Langevin-Simulated Annealing algorithms with multiplicative noise II: Total Variation

论文作者

Bras, Pierre, Pagès, Gilles

论文摘要

我们研究了Langevin模拟的退火类型算法的收敛性,即$ V:\ Mathbb {r}^d \ to \ Mathbb {r} $一个潜在的功能可以最小化,我们考虑了随机微分方程$ dy_t $ dy_t = -dt = -dt = -dt \ top \ nabla V(y__________________________________________________t + dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt dt(y__t) a(t)σ(y_t)dw_t + a(t)^2υ(y_t)dt $,其中$(w_t)$是一个布朗运动,其中$σ:\ Mathbb {r}^d \ to \ to \ nathcal {mathcal {m} _d(m} _d _d(\ mathbb {r}) \ Mathbb {r}^+ \ to \ mathbb {r}^+ $是一个函数降低到$ 0 $,而$υ$是一个更正术语。与经典的langevin方程相比,允许$σ$取决于位置会带来更快的收敛性。在上一篇论文中,我们在$ l^1 $ -wasserstein中建立了$ y_t $的距离及其相关的Euler方案$ \ bar {y} _t _t $ to $ \ text {argmin}(argmin}(v)$,带有经典附表$ a(t)= a(t)= a \ log^a \ log^a \ log^{ - 1/2}( - 1/2}(t)$。在本文中,我们证明了总变化距离的收敛性。总变化案例似乎更需要处理,需要正则化引理。

We study the convergence of Langevin-Simulated Annealing type algorithms with multiplicative noise, i.e. for $V : \mathbb{R}^d \to \mathbb{R}$ a potential function to minimize, we consider the stochastic differential equation $dY_t = - σσ^\top \nabla V(Y_t) dt + a(t)σ(Y_t)dW_t + a(t)^2Υ(Y_t)dt$, where $(W_t)$ is a Brownian motion, where $σ: \mathbb{R}^d \to \mathcal{M}_d(\mathbb{R})$ is an adaptive (multiplicative) noise, where $a : \mathbb{R}^+ \to \mathbb{R}^+$ is a function decreasing to $0$ and where $Υ$ is a correction term. Allowing $σ$ to depend on the position brings faster convergence in comparison with the classical Langevin equation $dY_t = -\nabla V(Y_t)dt + σdW_t$. In a previous paper we established the convergence in $L^1$-Wasserstein distance of $Y_t$ and of its associated Euler scheme $\bar{Y}_t$ to $\text{argmin}(V)$ with the classical schedule $a(t) = A\log^{-1/2}(t)$. In the present paper we prove the convergence in total variation distance. The total variation case appears more demanding to deal with and requires regularization lemmas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源