论文标题

可学习的补丁和自我教学,用于单眼内窥镜的多帧深度估计

Learnable Patchmatch and Self-Teaching for Multi-Frame Depth Estimation in Monocular Endoscopy

论文作者

Shao, Shuwei, Pei, Zhongcai, Chen, Weihai, Wu, Xingming, Liu, Zhong

论文摘要

这项工作深入研究了无监督的单眼深度估计,内窥镜检查中利用相邻框架在训练阶段建立监督信号。对于许多临床应用,例如手术导航,在测试时也可以使用时间相关的框架。由于缺乏深度线索,因此在两个阶段的多个视频帧之间充分利用时间相关性对于准确的深度估计至关重要。但是,内窥镜场景中的一些挑战,例如低和均匀的纹理以及框架间的亮度波动,限制了时间相关性的性能增长。为了充分利用它,我们提出了一种新型的无监督的多帧单眼估计模型。提出的模型集成了一个可学习的贴片模块,以适应质地低和均匀纹理的区域的判别能力,并实施交叉教学和自我教学的一致性,以提供有效的正规化亮度波动。此外,作为自学范式的副产品,当测试时输入更多帧时,提出的模型能够改善深度预测。我们在包括害怕,内山,Hamlyn和Serv-CT在内的多个数据集上进行了详细的实验。实验结果表明,我们的模型超过了最新的竞争对手。接受源代码和训练有素的模型将在接受后公开使用。

This work delves into unsupervised monocular depth estimation in endoscopy, which leverages adjacent frames to establish a supervisory signal during the training phase. For many clinical applications, e.g., surgical navigation, temporally correlated frames are also available at test time. Due to the lack of depth clues, making full use of the temporal correlation among multiple video frames at both phases is crucial for accurate depth estimation. However, several challenges in endoscopic scenes, such as low and homogeneous textures and inter-frame brightness fluctuations, limit the performance gain from the temporal correlation. To fully exploit it, we propose a novel unsupervised multi-frame monocular depth estimation model. The proposed model integrates a learnable patchmatch module to adaptively increase the discriminative ability in regions with low and homogeneous textures, and enforces cross-teaching and self-teaching consistencies to provide efficacious regularizations towards brightness fluctuations. Furthermore, as a byproduct of the self-teaching paradigm, the proposed model is able to improve the depth predictions when more frames are input at test time. We conduct detailed experiments on multiple datasets, including SCARED, EndoSLAM, Hamlyn and SERV-CT. The experimental results indicate that our model exceeds the state-of-the-art competitors. The source code and trained models will be publicly available upon the acceptance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源