论文标题

dynkin型$ \ mathbb {a} _n $的非负posets的结构

Structure of non-negative posets of Dynkin type $\mathbb{A}_n$

论文作者

Gąsiorek, Marcin

论文摘要

如果对称gram matrix $ g_i:= \ frac {1} {2} {2} {2} {2} {2} {2}(c_i + c_i + c_i + c_i + c_i^{tr} {tr})\ in \ in \ mathbb {mathbb {mathbb {m mathbb {m} r,则p poset $ i =(\ {1,\ {1,\ ldots,\ ldots,n \},\ leq_i)$被称为非阴性。 semi-definite,其中$ c_i \ in \ mathbb {m} _n(\ mathbb {z})$是$(0,1)$ - 编码关系$ \ leq_i $的$(0,1)$ - 矩阵。每个这样的连接的poset $ i $,to $ \ mathbb {z} $ - $ g_i $矩阵的一致性,由唯一简单的dynkin图$ \ mathrm {dyn andrm {dyn} _i \ in \ in \ { \ mathbb {d} _m,\ m athbb {e} _6,\ mathbb {e} _7,\ mathbb {e} _8 \} $。我们表明$ \ mathrm {dyn} _i = \ mathbb {a} _n $意味着矩阵$ g_i $是等级$ n $或$ n-1 $。此外,我们描绘了Hasse Digraphs $ \ Mathcal {h}(i)的明确形状,所有此类posets〜 $ i $的$并为其编号设计了公式。

A poset $I=(\{1,\ldots, n\}, \leq_I)$ is called non-negative if the symmetric Gram matrix $G_I:=\frac{1}{2}(C_I + C_I^{tr})\in\mathbb{M}_n(\mathbb{R})$ is positive semi-definite, where $C_I\in\mathbb{M}_n(\mathbb{Z})$ is the $(0,1)$-matrix encoding the relation $\leq_I$. Every such a connected poset $I$, up to the $\mathbb{Z}$-congruence of the $G_I$ matrix, is determined by a unique simply-laced Dynkin diagram $\mathrm{Dyn}_I\in\{\mathbb{A}_m, \mathbb{D}_m,\mathbb{E}_6,\mathbb{E}_7,\mathbb{E}_8\}$. We show that $\mathrm{Dyn}_I=\mathbb{A}_n$ implies that the matrix $G_I$ is of rank $n$ or $n-1$. Moreover, we depict explicit shapes of Hasse digraphs $\mathcal{H}(I)$ of all such posets~$I$ and devise formulae for their number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源