论文标题

具有排除相互作用的有限不均匀粒子系统的动力学

Dynamics of finite inhomogeneous particle systems with exclusion interaction

论文作者

Malyshev, Vadim, Menshikov, Mikhail, Popov, Serguei, Wade, Andrew

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study finite particle systems on the one-dimensional integer lattice, where each particle performs a continuous-time nearest-neighbour random walk, with jump rates intrinsic to each particle, subject to an exclusion interaction which suppresses jumps that would lead to more than one particle occupying any site. We show that the particle jump rates determine explicitly a unique partition of the system into maximal stable sub-systems, and that this partition can be obtained by a linear-time algorithm using only elementary arithmetic. The internal configuration of each stable sub-system possesses an explicit product-geometric limiting distribution, and the location of each stable sub-system obeys a strong law of large numbers with an explicit speed; the characteristic parameters of each stable sub-system are simple functions of the rate parameters for the corresponding particles. For the case where the entire system is stable, we provide a central limit theorem describing the fluctuations around the law of large numbers. Our approach draws on ramifications, in the exclusion context, of classical work of Goodman and Massey on partially-stable Jackson queueing networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源