论文标题

部分可观测时空混沌系统的无模型预测

Approximating k-Edge-Connected Spanning Subgraphs via a Near-Linear Time LP Solver

论文作者

Chalermsook, Parinya, Huang, Chien-Chung, Nanongkai, Danupon, Saranurak, Thatchaphol, Sukprasert, Pattara, Yingchareonthawornchai, Sorrachai

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In the $k$-edge-connected spanning subgraph ($k$ECSS) problem, our goal is to compute a minimum-cost sub-network that is resilient against up to $k$ link failures: Given an $n$-node $m$-edge graph with a cost function on the edges, our goal is to compute a minimum-cost $k$-edge-connected spanning subgraph. This NP-hard problem generalizes the minimum spanning tree problem and is the "uniform case" of a much broader class of survival network design problems (SNDP). A factor of two has remained the best approximation ratio for polynomial-time algorithms for the whole class of SNDP, even for a special case of $2$ECSS. The fastest $2$-approximation algorithm is however rather slow, taking $O(mn k)$ time [Khuller, Vishkin, STOC'92]. A faster time complexity of $O(n^2)$ can be obtained, but with a higher approximation guarantee of $(2k-1)$ [Gabow, Goemans, Williamson, IPCO'93]. Our main contribution is an algorithm that $(1+ε)$-approximates the optimal fractional solution in $\tilde O(m/ε^2)$ time (independent of $k$), which can be turned into a $(2+ε)$ approximation algorithm that runs in time $\tilde O\left(\frac{m}{ε^2} + \frac{k^2n^{1.5}}{ε^2}\right)$ for (integral) $k$ECSS; this improves the running time of the aforementioned results while keeping the approximation ratio arbitrarily close to a factor of two.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源