论文标题

扩展马尔可夫地图的统一近似问题

Uniform approximation problems of expanding Markov maps

论文作者

He, Yubin, Liao, Lingmin

论文摘要

令$ t:[0,1] \至[0,1] $是带有有限分区的扩展马尔可夫地图。令$μ_=$为与Hölder连续潜在$ ϕ $相关的不变吉布斯度量。在本文中,我们研究了均匀近似集的大小 \ [\ [\ Mathcal U^κ(x):= \ {y \ in [0,1]:\ forall n \ gg1,〜\ arists n \ le n,\ text {sO} 其中$κ> 0 $和$ x \ in [0,1] $。 $κ$的临界价值使得$ \ textrm {dim} _ {\ textrm h} \ Mathcal u^κ(x)= 1 $ for $μ_x$ -a.e. $ -a.e. $ \ $ \,x $已被证明为$ 1/α_ {\ max} $,$ 1/α_ {\ max} $ ϕ \,dμ_ {\ max}/\ int \ log | t'| \,dμ_ {\ max} $和$μ_ {\ max} $是与潜在$ - \ log log | t'|相关的gibbs度量。 $。此外,当$κ> 1/α_ {\ max} $时,我们表明,对于$μ_x$ -A.E. $ \,x $,$ \ MATHCAL u^κ(x)$的Hausdorff尺寸,与$μ__$μ_V的多fractal频谱同意。

Let $ T:[0,1]\to[0,1] $ be an expanding Markov map with a finite partition. Let $ μ_ϕ$ be the invariant Gibbs measure associated with a Hölder continuous potential $ ϕ$. In this paper, we investigate the size of the uniform approximation set \[\mathcal U^κ(x):=\{y\in[0,1]:\forall N\gg1,~\exists n\le N, \text{ such that }|T^nx-y|<N^{-κ}\},\] where $ κ>0 $ and $ x\in[0,1] $. The critical value of $ κ$ such that $ \textrm{dim}_{\textrm H}\mathcal U^κ(x)=1 $ for $ μ_ϕ$-a.e.$ \, x $ is proven to be $ 1/α_{\max} $, where $ α_{\max}=-\int ϕ\,dμ_{\max}/\int\log|T'|\,dμ_{\max} $ and $ μ_{\max} $ is the Gibbs measure associated with the potential $ -\log|T'| $. Moreover, when $ κ>1/α_{\max} $, we show that for $ μ_ϕ$-a.e.$ \, x $, the Hausdorff dimension of $ \mathcal U^κ(x) $ agrees with the multifractal spectrum of $ μ_ϕ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源