论文标题
一种自动检测讲课定性特征的深度学习方法
A Deep Learning Approach for Automatic Detection of Qualitative Features of Lecturing
论文作者
论文摘要
高等教育中的人工智能为改善讲课过程提供了新的可能性,例如丰富教学材料,帮助评估学生的作品,甚至向教师提供有关如何增强讲座的指示。我们遵循这一研究路径,在这项工作中,我们探讨了如何通过定量特征自动评估学术讲座。首先,我们根据教学实践准备了一套定性功能,然后注释为此目的收集的学术教学视频数据集。然后,我们展示如何使用机器学习和计算机视觉技术自动检测这些功能。我们的结果表明我们工作的潜在有用性。
Artificial Intelligence in higher education opens new possibilities for improving the lecturing process, such as enriching didactic materials, helping in assessing students' works or even providing directions to the teachers on how to enhance the lectures. We follow this research path, and in this work, we explore how an academic lecture can be assessed automatically by quantitative features. First, we prepare a set of qualitative features based on teaching practices and then annotate the dataset of academic lecture videos collected for this purpose. We then show how these features could be detected automatically using machine learning and computer vision techniques. Our results show the potential usefulness of our work.