论文标题
关于产品的分解性
On resolvability of products
论文作者
论文摘要
下面的所有空间都是$ T_0 $和拥挤的(即没有隔离点)。 对于$ n \leΩ$,让$ m(n)$是$ n $可衡量的红衣主教和$π(n)$($π^+(n)$)的说法,即有$ n+1 $(0二维$ t_2 $)空间,其产品的产品不可兑换。我们证明$ m(1),\,π(1)$和$π^+(1)$是均等的。对于$ 1 <n <ω$,我们表明$ con(m(n))$表示$ con(π^+(n))$。最后,$ con(m(ω))$意味着拥有无限拥挤的0维$ t_2 $空间的一致性,以使其任何有限的产品的产物都无法解决。这些解决了马利钦的旧问题。 关于Ceder和Pearson的较旧问题,我们表明以下是一致的模型,可衡量的基础主教: (i)有一个0维$ t_2 $ space $ x $,带有$ω_2\leδ(x)\ le 2^{ω_1} $,其具有任何可数空间的产品不是$ω_2$ - 可分辨物,因此不是最大值的。 (ii)有一个单调的正常空间$ x $,带有$δ(x)= \aleph_Ω$,其具有任何可计数空间的产品不是$ω_1$ - 可兑换,因此无法最大程度地分解。 这些显着改善了Eckertson的结果。
All spaces below are $T_0$ and crowded (i.e. have no isolated points). For $n \le ω$ let $M(n)$ be the statement that there are $n$ measurable cardinals and $Π(n)$ ($Π^+(n)$) that there are $n+1$ (0-dimensional $T_2$) spaces whose product is irresolvable. We prove that $M(1),\,Π(1)$ and $Π^+(1)$ are equiconsistent. For $1 < n < ω$ we show that $CON(M(n))$ implies $CON(Π^+(n))$. Finally, $CON(M(ω))$ implies the consistency of having infinitely many crowded 0-dimensional $T_2$-spaces such that the product of any finitely many of them is irresolvable. These settle old problems of Malychin. Concerning an even older question of Ceder and Pearson, we show that the following are consistent modulo a measurable cardinal: (i) There is a 0-dimensional $T_2$ space $X$ with $ω_2 \le Δ(X) \le 2^{ω_1}$ whose product with any countable space is not $ω_2$-resolvable, hence not maximally resolvable. (ii) There is a monotonically normal space $X$ with $Δ(X) = \aleph_ω$ whose product with any countable space is not $ω_1$-resolvable, hence not maximally resolvable. These significantly improve a result of Eckertson.