论文标题

通过图形对比学习增强顺序建议

Enhancing Sequential Recommendation with Graph Contrastive Learning

论文作者

Zhang, Yixin, Liu, Yong, Xu, Yonghui, Xiong, Hao, Lei, Chenyi, He, Wei, Cui, Lizhen, Miao, Chunyan

论文摘要

顺序推荐系统捕获用户的动态行为模式,以预测其下一个交互行为。大多数现有的顺序推荐方法仅利用单个交互序列的本地上下文信息,并仅根据项目预测损失来学习模型参数。因此,他们通常无法学习适当的顺序表示。本文提出了一个新颖的推荐框架,即顺序推荐的对比度学习(GCL4SR)。具体而言,GCL4SR采用基于所有用户的交互序列构建的加权项目过渡图(WITG),以提供每次交互的全局上下文信息,并削弱序列数据中的噪声信息。此外,GCL4SR使用WITG的子图来增强每个相互作用序列的表示。还提出了两个辅助学习目标,以最大程度地提高WITG上相同相互作用序列引起的增强表示之间的一致性,并最大程度地减少由全局上下文在WITG上增强对WITG和原始序列的局部表示之间的差异。对现实世界数据集的广泛实验表明,GCL4SR始终优于最先进的顺序推荐方法。

The sequential recommendation systems capture users' dynamic behavior patterns to predict their next interaction behaviors. Most existing sequential recommendation methods only exploit the local context information of an individual interaction sequence and learn model parameters solely based on the item prediction loss. Thus, they usually fail to learn appropriate sequence representations. This paper proposes a novel recommendation framework, namely Graph Contrastive Learning for Sequential Recommendation (GCL4SR). Specifically, GCL4SR employs a Weighted Item Transition Graph (WITG), built based on interaction sequences of all users, to provide global context information for each interaction and weaken the noise information in the sequence data. Moreover, GCL4SR uses subgraphs of WITG to augment the representation of each interaction sequence. Two auxiliary learning objectives have also been proposed to maximize the consistency between augmented representations induced by the same interaction sequence on WITG, and minimize the difference between the representations augmented by the global context on WITG and the local representation of the original sequence. Extensive experiments on real-world datasets demonstrate that GCL4SR consistently outperforms state-of-the-art sequential recommendation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源