论文标题
在分层磁性半导体AgCRSE2中旋转轨道衍生的巨型磁倍率
Spin-orbit-derived giant magnetoresistance in a layered magnetic semiconductor AgCrSe2
论文作者
论文摘要
二维磁性材料最近由于其独特的功能作为磁相的电场控制和异常旋转厅效应而引起了极大的兴趣。对于这种显着的功能,自旋轨道耦合(SOC)是必不可少的成分。在这里,我们报告了在分层的磁性半导体AgCRSE2中具有巨大的正磁性,这是SOC和Zeeman型自旋分裂的微妙组合的体现。当载体浓度接近2.5 \ times10^18 cm^-3的临界值时,在适用于导电层正常的磁场时,出现了〜400%的相当巨大磁磁性。基于磁透明效应和第一原理的计算,非常规磁磁性可归因于SOC诱导的J = 3/2状态中有效载体质量的增强,该状态通过P-D耦合通过Zeeman拆分,将其调用到Fermi水平。这项研究证明了二维磁性半导体中SOC衍生的磁转运的一个新方面,为新型的自旋功能铺平了道路。
Two-dimensional magnetic materials have recently attracted great interest due to their unique functions as the electric field control of a magnetic phase and the anomalous spin Hall effect. For such remarkable functions, a spin-orbit coupling (SOC) serves as an essential ingredient. Here we report a giant positive magnetoresistance in a layered magnetic semiconductor AgCrSe2, which is a manifestation of the subtle combination of the SOC and Zeeman-type spin splitting. When the carrier concentration approaches the critical value of 2.5\times10^18 cm^-3, a sizable positive magnetoresistance of ~400 % emerges upon the application of magnetic fields normal to the conducting layers. Based on the magneto-Seebeck effect and the first-principles calculations, the unconventional magnetoresistance is ascribable to the enhancement of effective carrier mass in the SOC induced J = 3/2 state, which is tuned to the Fermi level through the Zeeman splitting enhanced by the p-d coupling. This study demonstrates a new aspect of the SOC-derived magnetotransport in two-dimensional magnetic semiconductors, paving the way to novel spintronic functions.