论文标题
$ \ mathbf {r}^{2n} $的紧凑型星形超曲面的封闭特征的二分法结果
A dichotomy result for closed characteristics on compact star-shaped hypersurfaces in $\mathbf{R}^{2n}$
论文作者
论文摘要
在本文中,我们证明,如果在$ \ mathbf {r}^{2n} $中的紧凑型非脱位星形超圆形$σ$上的所有闭合特性都是椭圆形的,那么要么完全存在$ n $几何不同的封闭特性,要么存在无限多种不同的封闭特性。
In this paper, we prove that if all closed characteristics on a compact non-degenerate star-shaped hypersurface $Σ$ in $\mathbf{R}^{2n}$ are elliptic, then either there exist exactly $n$ geometrically distinct closed characteristics, or there exist infinitely many geometrically distinct closed characteristics.