论文标题
非线性schrödinger方程的哈密顿形式主义
Hamiltonian formalism for nonlinear Schrödinger equations
论文作者
论文摘要
我们研究了二阶和第四阶非线性Schrödinger方程的哈密顿形式主义。在二阶方程式的情况下,我们考虑立方和对数非线性。由于Lagrangians产生这些非线性方程式是退化的,因此我们跟随Dirac-Bergmann的形式主义来构建其相应的哈密顿人。为了获得一致的运动方程式,Dirac-Bergmann的形式主义施加了一些限制,这些约束伴随着汉密尔顿的总体及其Lagrange乘数。拉格朗日退化的顺序决定了主要约束的数量。乘数取决于约束的时间一致性。如果约束不是运动常数,则会引入次级约束以迫使一致性。我们表明,对于两个二阶非线性schrödinger方程,我们只有主要约束,非线性的形式不会改变系统的约束动力学。但是,引入较高的分散剂会改变约束动力学和次要约束,以构建一致的汉密尔顿运动方程。
We study the Hamiltonian formalism for second order and fourth order nonlinear Schrödinger equations. In the case of second order equation, we consider cubic and logarithmic nonlinearities. Since the Lagrangians generating these nonlinear equations are degenerate, we follow the Dirac-Bergmann formalism to construct their corresponding Hamiltonians. In order to obtain consistent equations of motion, the Dirac-Bergmann formalism imposes some set of constraints which contribute to the total Hamiltonian along with their Lagrange multipliers. The order of the Lagrangian degeneracy determines the number of the primary constraints. Multipliers are determined by the time consistency of constraints. If a constraint is not a constant of motion, a secondary constraint is introduced to force the consistency. We show that for both second order nonlinear Schrödinger equations we only have primary constraints, and the form of nonlinearity does not change the constraint dynamics of the system. However, introducing a higher order dispersion changes the constraint dynamics and secondary constraints are needed to construct a consistent Hamilton equations of motion.