论文标题
关于承诺硬绘制的硬度的注释
A note on hardness of promise hypergraph colouring
论文作者
论文摘要
我们显示了I. Dinur,O。Regev和C. Smyth的以下定理的简单证明:对于所有$ c \ geq 2 $,找到$ c $颜色的2色3-均匀的3-均匀的超级盖是NP-HARD。我们仅使用PCP定理的版本较弱的版本,在Promise CSP的代数框架中重新制定了这一结果。
We show a slightly simpler proof the following theorem by I. Dinur, O. Regev, and C. Smyth: for all $c \geq 2$, it is NP-hard to find a $c$-colouring of a 2-coloruable 3-uniform hypergraph. We recast this result in the algebraic framework for Promise CSPs, using only a weaker version of the PCP theorem.