论文标题
续:对比性神经文本生成
CoNT: Contrastive Neural Text Generation
论文作者
论文摘要
最近,对比学习吸引了对神经文本产生的越来越多的兴趣,这是减轻暴露偏见问题的新解决方案。它引入了一个序列级训练信号,该信号对始终依赖自动回应解码的生成任务至关重要。但是,在神经文本生成中使用对比度学习的先前方法通常会导致劣等的性能。在本文中,我们分析了根本原因,并提出了一个新的对比神经文本生成框架,续。 CONT解决了从三个方面的生成任务中广泛采用对比度学习的瓶颈 - 对比度示例的构建,对比度损失的选择以及解码的策略。我们验证具有十个基准测试的五个世代任务,包括机器翻译,摘要,代码评论生成,数据到文本生成和常识生成。实验结果表明,在所有十个基准测试基准上都以令人信服的利润率明显优于常规培训框架。尤其是,CONT分别超过了以前的文本生成最具竞争性的对比度学习方法,在机器翻译上1.50 BLEU和摘要上的1.77 Rouge-1。它在汇总,代码评论生成(没有外部数据)和数据之间生成的新最新最新。
Recently, contrastive learning attracts increasing interests in neural text generation as a new solution to alleviate the exposure bias problem. It introduces a sequence-level training signal which is crucial to generation tasks that always rely on auto-regressive decoding. However, previous methods using contrastive learning in neural text generation usually lead to inferior performance. In this paper, we analyse the underlying reasons and propose a new Contrastive Neural Text generation framework, CoNT. CoNT addresses bottlenecks that prevent contrastive learning from being widely adopted in generation tasks from three aspects -- the construction of contrastive examples, the choice of the contrastive loss, and the strategy in decoding. We validate CoNT on five generation tasks with ten benchmarks, including machine translation, summarization, code comment generation, data-to-text generation and commonsense generation. Experimental results show that CoNT clearly outperforms the conventional training framework on all the ten benchmarks with a convincing margin. Especially, CoNT surpasses previous the most competitive contrastive learning method for text generation, by 1.50 BLEU on machine translation and 1.77 ROUGE-1 on summarization, respectively. It achieves new state-of-the-art on summarization, code comment generation (without external data) and data-to-text generation.