论文标题
在非结构化多边形网格上不连续的galerkin方案的连续有限元亚网格基础函数
Continuous finite element subgrid basis functions for Discontinuous Galerkin schemes on unstructured polygonal Voronoi meshes
论文作者
论文摘要
我们提出了一种新的高阶精确淋巴结不连续的盖尔金(DG)方法,用于在非结构化多边形Voronoi网格上的偏微分方程(PDE)的非线性双曲系统溶液。与其使用每个元素内部n内的经典多项式,在我们的新方法中,离散解决方案由每个Voronoi元素内的分段连续多项式表示,使用在每个Polygon内部的子网格上定义的连续有限元基础。我们将最终的子网格基准称为一般多边形的DG方法的团聚有限元(AFE),因为它是通过与亚网格三角形相关的有限元基基函数的聚集来获得的。像往常一样,在通用参考元件上定义了每个子三角形上的基本函数,因此仅在参考元件的预处理阶段,一劳永逸地计算一个子网三角形的通用质量,通量和刚度矩阵。因此,尽管计算网格的非结构化性质,但仍有可能建造有效的无正流算法。通过ADER方法,使用了元素 - 本地时空盖尔金有限元预测器,实现了高度准确性。 针对可压缩的Euler和Navier-Stokes方程的一组典型基准问题,对新型方案进行了仔细的验证。数值结果已与文献中可用的参考解决方案进行了检查,并从计算效率和准确性方面进行了系统的比较,并与该方案的相应模态DG版本获得的结果进行了比较。
We propose a new high order accurate nodal discontinuous Galerkin (DG) method for the solution of nonlinear hyperbolic systems of partial differential equations (PDE) on unstructured polygonal Voronoi meshes. Rather than using classical polynomials of degree N inside each element, in our new approach the discrete solution is represented by piecewise continuous polynomials of degree N within each Voronoi element, using a continuous finite element basis defined on a subgrid inside each polygon. We call the resulting subgrid basis an agglomerated finite element (AFE) basis for the DG method on general polygons, since it is obtained by the agglomeration of the finite element basis functions associated with the subgrid triangles. The basis functions on each sub-triangle are defined, as usual, on a universal reference element, hence allowing to compute universal mass, flux and stiffness matrices for the subgrid triangles once and for all in a pre-processing stage for the reference element only. Consequently, the construction of an efficient quadrature-free algorithm is possible, despite the unstructured nature of the computational grid. High order of accuracy in time is achieved thanks to the ADER approach, making use of an element-local space-time Galerkin finite element predictor. The novel schemes are carefully validated against a set of typical benchmark problems for the compressible Euler and Navier-Stokes equations. The numerical results have been checked with reference solutions available in literature and also systematically compared, in terms of computational efficiency and accuracy, with those obtained by the corresponding modal DG version of the scheme.