论文标题
部分可观测时空混沌系统的无模型预测
Graph Structure Based Data Augmentation Method
论文作者
论文摘要
在本文中,我们提出了一种基于图形的新型数据增强方法,通常可以应用于具有图形结构的医疗波形数据。在记录医疗波形数据的过程中,例如心电图(ECG)或脑电图(EEG),由于铅位置的差异,测量引线之间存在角度扰动。具有较大角度扰动的数据样本通常会导致算法预测任务中的不准确性。我们设计了一种基于图的数据增强技术,该技术利用了医疗波形数据中固有的图形结构,以提高性能和鲁棒性。此外,我们表明,通过针对对抗性攻击进行测试,鲁棒性得出的绩效增长来自鲁棒性。由于绩效增益的基础是正交的,因此图形扩展可与现有数据增强技术结合使用,以进一步提高最终性能。我们认为,我们的图表增强方法为数据增强中的探索开辟了新的可能性。
In this paper, we propose a novel graph-based data augmentation method that can generally be applied to medical waveform data with graph structures. In the process of recording medical waveform data, such as electrocardiogram (ECG) or electroencephalogram (EEG), angular perturbations between the measurement leads exist due to discrepancies in lead positions. The data samples with large angular perturbations often cause inaccuracy in algorithmic prediction tasks. We design a graph-based data augmentation technique that exploits the inherent graph structures within the medical waveform data to improve both performance and robustness. In addition, we show that the performance gain from graph augmentation results from robustness by testing against adversarial attacks. Since the bases of performance gain are orthogonal, the graph augmentation can be used in conjunction with existing data augmentation techniques to further improve the final performance. We believe that our graph augmentation method opens up new possibilities to explore in data augmentation.