论文标题

微控制器级硬件的机器学习:评论

Machine Learning for Microcontroller-Class Hardware: A Review

论文作者

Saha, Swapnil Sayan, Sandha, Sandeep Singh, Srivastava, Mani

论文摘要

机器学习的进步为低端互联网节点(例如微控制器)带来了新的机会。传统的机器学习部署具有较高的内存,并计算足迹阻碍了其在超资源约束的微控制器上的直接部署。本文强调了为微控制器类设备启用机载机器学习的独特要求。研究人员为资源有限的应用程序使用专门的模型开发工作流程,以确保计算和延迟预算在设备限制之内,同时仍保持所需的性能。我们表征了一个广泛适用于MicroController类设备的机器学习模型开发的闭环工作流程,并表明几类应用程序采用了它的特定实例。我们通过展示多种用例,向模型开发的不同阶段提供定性和数值见解。最后,我们确定了开放的研究挑战和未解决的问题,要求仔细考虑前进。

The advancements in machine learning opened a new opportunity to bring intelligence to the low-end Internet-of-Things nodes such as microcontrollers. Conventional machine learning deployment has high memory and compute footprint hindering their direct deployment on ultra resource-constrained microcontrollers. This paper highlights the unique requirements of enabling onboard machine learning for microcontroller class devices. Researchers use a specialized model development workflow for resource-limited applications to ensure the compute and latency budget is within the device limits while still maintaining the desired performance. We characterize a closed-loop widely applicable workflow of machine learning model development for microcontroller class devices and show that several classes of applications adopt a specific instance of it. We present both qualitative and numerical insights into different stages of model development by showcasing several use cases. Finally, we identify the open research challenges and unsolved questions demanding careful considerations moving forward.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源