论文标题

添加剂高阶分数计算机

Additive Higher-Order Factorization Machines

论文作者

Rügamer, David

论文摘要

在大数据和可解释的机器学习的时代,方法需要大规模工作,同时允许对该方法的内部工作有清晰的数学理解。尽管存在用于大规模应用的固有解释的半参数回归技术以说明数据中的非线性,但它们的模型复杂性仍然经常受到限制。主要局限性之一是在这些模型中缺少交互作用,而这些模型不是为了更好的解释性,而是由于无法支撑的计算成本所致。为了解决这一缺点,我们使用分解方法得出了可扩展的高阶张量产品样条模型。我们的方法允许包括非线性特征效应的所有(高阶)相互作用,同时与没有相互作用的模型成正比的计算成本。我们从理论上和经验上证明我们的方法比现有方法要缩放得更好,得出有意义的惩罚方案,并讨论了进一步的理论方面。我们最终通过合成和真实数据研究了预测性和估计性能。

In the age of big data and interpretable machine learning, approaches need to work at scale and at the same time allow for a clear mathematical understanding of the method's inner workings. While there exist inherently interpretable semi-parametric regression techniques for large-scale applications to account for non-linearity in the data, their model complexity is still often restricted. One of the main limitations are missing interactions in these models, which are not included for the sake of better interpretability, but also due to untenable computational costs. To address this shortcoming, we derive a scalable high-order tensor product spline model using a factorization approach. Our method allows to include all (higher-order) interactions of non-linear feature effects while having computational costs proportional to a model without interactions. We prove both theoretically and empirically that our methods scales notably better than existing approaches, derive meaningful penalization schemes and also discuss further theoretical aspects. We finally investigate predictive and estimation performance both with synthetic and real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源