论文标题

在缩放临界规则上的高度规律上的立方非线性热方程的范数通胀

Norm inflation for the cubic nonlinear heat equation above the scaling critical regularity

论文作者

Chevyrev, Ilya, Oh, Tadahiro, Wang, Yuzhao

论文摘要

我们考虑了立方非线性热方程的不适性问题,并证明了Norm Efflation theHölder-Besov Space中无限丧失的规律性损失$ \ MATHCAL C^S = B^{s} _ {\ infty,\ infty,\ infty,\ infty,\ infty} $ for $ s \ le-s \ le- \ frac 23 $。特别是,我们的结果包括亚临界范围$ -1 <s \ le- \ frac 23 $,相对于Hölder -Besov量表,该范围高于缩放量表的规律$ s = -1 $。鉴于$ \ Mathcal c^s $,$ s> - \ frac 23 $的结果良好,我们的不适性结果是敏锐的。

We consider the ill-posedness issue for the cubic nonlinear heat equation and prove norm inflation with infinite loss of regularity in the Hölder-Besov space $\mathcal C^s = B^{s}_{\infty, \infty}$ for $ s \le -\frac 23$. In particular, our result includes the subcritical range $-1< s \le -\frac 23$, which is above the scaling critical regularity $s = -1$ with respect to the Hölder-Besov scale. In view of the well-posedness result in $\mathcal C^s$, $s > -\frac 23$, our ill-posedness result is sharp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源