论文标题

克服分布式着色的拥塞

Overcoming Congestion in Distributed Coloring

论文作者

Halldórsson, Magnús M., Nolin, Alexandre, Tonoyan, Tigran

论文摘要

我们提出了一种新技术,可以有效地采样和传达分布式抽样空间的大量元素。当在最近的本地算法的上下文中使用$(\ operatorName {gegar} +1)$ - 列表颜色(D1LC)时,这使我们可以在$ o(\ log^5 \ log n)$ colest $ colests中求解D1LC,并且仅在$ o(\ log log^* n)$ founds $ $ $ $ $ $上( 该技术还可以立即应用在本地测试某些图形属性,并估算$ O(1)$ o(1)$ coless Rounds,W.H.P.的本地子图的稀疏/密度。

We present a new technique to efficiently sample and communicate a large number of elements from a distributed sampling space. When used in the context of a recent LOCAL algorithm for $(\operatorname{degree}+1)$-list-coloring (D1LC), this allows us to solve D1LC in $O(\log^5 \log n)$ CONGEST rounds, and in only $O(\log^* n)$ rounds when the graph has minimum degree $Ω(\log^7 n)$, w.h.p. The technique also has immediate applications in testing some graph properties locally, and for estimating the sparsity/density of local subgraphs in $O(1)$ CONGEST rounds, w.h.p.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源