论文标题
具有非线性刚度的可重构旋转系列弹性执行器的设计,建模和控制辅助机器人
Design, Modelling, and Control of a Reconfigurable Rotary Series Elastic Actuator with Nonlinear Stiffness for Assistive Robots
论文作者
论文摘要
在辅助机器人中,合规的执行器是建立安全和令人满意的人类机器人相互作用(PHRI)的关键组成部分。兼容的执行器的性能很大程度上取决于弹性元件的刚度。通常,需要低刚度来实现低阻抗,高力控制和安全的PHRI,而需要高刚度以确保足够的力带宽和输出力。但是,这些要求是矛盾的,通常根据不同的任务和条件有所不同。为了解决刚度选择的矛盾并提高对不同应用的适应性,我们开发了可用于辅助机器人的非线性刚度(RRSEANS)的可重构旋转串联弹性执行器。在本文中,介绍了可重构旋转系列弹性元件(RSEE)的精确模型,并研究了调整原理,然后进行详细的分析和实验验证。 RRSEANS可以提供从0.095 nm/deg到2.33 nm/dEg的较广泛的刚度,并且相对于可重构RSEE的不同构型,可以产生不同的刚度曲线。通过对频率响应,扭矩控制和PHRI的实验来验证RRSEANS的整体性能,这对于辅助机器人中的大多数应用都足够。具体而言,相互作用扭矩的根平方(RMS)误差在透明/递送模式下导致低至0.07 nm,这证明了PHRI中RRSEANS的优势。
In assistive robots, compliant actuator is a key component in establishing safe and satisfactory physical human-robot interaction (pHRI). The performance of compliant actuators largely depends on the stiffness of the elastic element. Generally, low stiffness is desirable to achieve low impedance, high fidelity of force control and safe pHRI, while high stiffness is required to ensure sufficient force bandwidth and output force. These requirements, however, are contradictory and often vary according to different tasks and conditions. In order to address the contradiction of stiffness selection and improve adaptability to different applications, we develop a reconfigurable rotary series elastic actuator with nonlinear stiffness (RRSEAns) for assistive robots. In this paper, an accurate model of the reconfigurable rotary series elastic element (RSEE) is presented and the adjusting principles are investigated, followed by detailed analysis and experimental validation. The RRSEAns can provide a wide range of stiffness from 0.095 Nm/deg to 2.33 Nm/deg, and different stiffness profiles can be yielded with respect to different configuration of the reconfigurable RSEE. The overall performance of the RRSEAns is verified by experiments on frequency response, torque control and pHRI, which is adequate for most applications in assistive robots. Specifically, the root-mean-square (RMS) error of the interaction torque results as low as 0.07 Nm in transparent/human-in-charge mode, demonstrating the advantages of the RRSEAns in pHRI.