论文标题
从额叶和侧视图图像估算3D身体形状和服装测量值
Estimation of 3D Body Shape and Clothing Measurements from Frontal- and Side-view Images
论文作者
论文摘要
对3D人体形状和服装测量值的估计对于时装行业的虚拟尝试和尺寸建议问题至关重要,但是由于多种条件,例如缺乏公开可用的现实数据集,多个相机分辨率的歧义以及不可定用的人类形状空间,始终是一个具有挑战性的问题。现有作品提出了各种解决方案解决这些问题的方法,但由于复杂性和限制,行业改编无法成功。为了解决复杂性和挑战,在本文中,我们提出了一个简单而有效的体系结构,以估算额形图像和侧视图像的形状和度量。我们利用两个多视图图像中的轮廓分割,并实现自动编码器网络,以从分段的轮廓中学习低维功能。然后,我们采用基于内核的正则回归模块来估计身体形状和测量值。实验结果表明,所提出的方法在合成数据集,NOMO-3D-400-SCANS数据集和RGB图像上提供了竞争结果,这些人类在不同的摄像机中捕获的人类。
The estimation of 3D human body shape and clothing measurements is crucial for virtual try-on and size recommendation problems in the fashion industry but has always been a challenging problem due to several conditions, such as lack of publicly available realistic datasets, ambiguity in multiple camera resolutions, and the undefinable human shape space. Existing works proposed various solutions to these problems but could not succeed in the industry adaptation because of complexity and restrictions. To solve the complexity and challenges, in this paper, we propose a simple yet effective architecture to estimate both shape and measures from frontal- and side-view images. We utilize silhouette segmentation from the two multi-view images and implement an auto-encoder network to learn low-dimensional features from segmented silhouettes. Then, we adopt a kernel-based regularized regression module to estimate the body shape and measurements. The experimental results show that the proposed method provides competitive results on the synthetic dataset, NOMO-3d-400-scans Dataset, and RGB Images of humans captured in different cameras.